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ABSTRACT 
Today we have autonomous vehicles already on select road-ways and 

regions of this country operating in and around humans and human operated 

vehicles.  The companies developing and testing these systems have experienced 

varied degrees of success and failure with regard to safe operations within this 

public space. There have been safety incidents that have made national headlines 

(when human fatalities have occurred) and their also exist a litany of other physical 

incidents, usually with human operated systems, that have not grabbed the 

headlines.  Some of the select communities where these autonomous systems have 

been operationally tested have revoked access to their roadways (kicked out) some 

of these companies.  As a result of these incidents recent data suggests that the 

public trust in autonomous vehicles is eroding [1].  This situation is couponed by 

the fact that there are no established safety standards, measures or technological 

methods to help local, state or national entities to ensure that these systems are 

operating under any level of safety scrutiny.   This situation has accelerated the 

need for innovative research within the domain of autonomous vehicle safety 

approaches.  

 

This paper describes a new methodology for automated driving to address these 

safety issues that entails the creation of a new computational process we call the 

Safety Reasoning System (SRS).  This system will monitor and adjust the actions of 

an autonomous vehicle operating in highly cluttered scenarios with a focus on 

traffic intersections (specifically T-intersections).  The SRS works in probabilistic 

space and models the world into propositions informed by both current and 

projected data sets.   By inferencing on the relationships between data sets we are 

able to form anticipated safety propositions on the likely effects of the autonomous 

vehicles projected actions. Thus, potentially reducing the occurrence of 

catastrophic outcomes.    
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1. INTRODUCTION 
This past decade we have experienced the 

introduction of autonomous vehicle technologies 

into our societal norms.  In certain part of the 

United States it is more common, on a daily basis, 

to witness an autonomous vehicle driving 

(manually or autonomously) on public roads ways 

than it is to not see one.  Many corporations have 

made public projections that this technology will 

become even more prevalent across the country in 

the coming years (many projecting a large increase 

before 2025).    This situation exists while public 

trust in these systems has eroded [1] due to the 

widely publicized examples of catastrophic events 

that have occurred in this domain [2, 3].  It is clear 

that there is opportunity for innovative research 

into the safety case for these systems.   

 

We introduce a new technique to assess the safety 

case of motion decisions made by autonomous 

planning agents/systems in complex but 

structurally causal scenarios.  One such structurally 

causal scenario is autonomous agents making 

navigation decision at roadway T-intersections as 

seen in figure 1.   

 

 

 

This scenario is structurally causal in the fact that 

the logical action decision space for the agent is 

limited (turn left, turn right, hedge forward, do 

nothing) and both the factors influencing these 

potential actions and consequences of executing 

them can be derived from pervious scenario states. 

 

A significant portion of research in the 

automotive autonomous navigation literature on 

safe motion-decision making within complex 

scenarios utilize probabilistic techniques.  In [4] the 

authors describe a control technique for 

determining control actions for robotic vehicles at 

intersections using probabilistic approaches that 

consider intended autonomous vehicle actions 

along with the estimated intent of other vehicles 

within the scene.  In [5] the authors present a 

method for an autonomous ground vehicle to 

present an optimization-based path planner that is 

capable of planning multiple contingency paths to 

predict future trajectories of dynamic obstacles.  

However, both of these approaches are limited to 

accounting for obstacles that can be seen at the 

local vehicle level thus limiting their applicability 

to predict the actions of obscured vehicles.  In [6, 

7] the authors present a method to cluster vehicle 

actions into a set of policies in order to model and 

determine the behavior of the autonomous vehicle 

of interest and react to the actions of other vehicles.  

This policy clustering system allows the 

autonomous vehicle to predict the actions of other 

vehicles in the scene based on observed history 

states of nearby vehicles.  However, it presents a 

very complex methodology of policy determination 

that is only able to work in real time scenarios if a 

small set of predetermined policies are considered.  

In [8, 9, 10] the authors assume that there is no 

uncertainty associated with future states of obstacle 

vehicles in their approach toward the development 

of deliberate reactive control techniques.  The 

assumption utilized is that there is some type of 

communication that exists where other scene actors 

broadcast their intentions over communication 

channels.  In [5, 11, 12] the anticipation techniques 

consist of computing the possible goals of an 

obstacle vehicle by planning from its standpoint, 

accounting for its current state. This strategy is 

similar to the factorization of potential driving 

behaviors into a set of policies as described in [7], 

but lacks closed-loop simulation of vehicle 

interactions.  In [13, 14, 15, 16, 17] Gaussian 

Figure 1: Autonomous vehicle (blue) at a T-Intersection 

with traffic 
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Process (GP) regression was utilized to learn 

typical motion patterns for classification and 

prediction of obstacle agent trajectories.  In [18, 19] 

the authors propose hierarchical dynamic Bayesian 

Networks where some of the models on the network 

are learned from observations using an expectation 

maximization (EM) approach to execute behavioral 

goal selections. 

 

All of these approaches toward automotive safety 

in autonomous decision-making focus on 

implementing these processes directly into the 

vehicles core Autonomous Navigation System 

(ANS).  They propose a means to address safety 

navigation challenges, in complex and dynamic 

environments, through application of specific new 

path planning, object motion estimators or dynamic 

decision engines.  None of these efforts look at the 

problem from the perspective of an independent 

process that monitors and observes the holistic 

output decision of the ANS.  None consider the 

concept of Separation of Duties (SoD) [20] which 

entails the decomposition of the safety mission into 

a separate decision process.  This approach to SoD 

adds another layer of safety to the autonomous 

vehicles driving controller (currently consisting of 

only ANS inputs) and operates similar to how 

Advanced Driver-Assistance Systems (ADAS) 

operate to enhance the performance of human 

drivers.  In addition, the SoD concept could enable 

for advancement in the testing of autonomous 

vehicles as it introduces a method to independently 

asses the safe actions of a vendor’s particular ANS 

approach.    

 

In this paper we propose an approach toward the 

generation of an autonomous vehicle Safety 

Reasoning System (SRS) based on the SoD concept 

and the utilization of anticipation theory.  This 

approach takes advantage of the temporal causality 

that exists in scenarios that have rules and 

topologies that can dictate and reasonably bound 

the dynamics that cause navigational decision 

uncertainty.  We consider this approach akin to 

creation of an ADAS component designed 

specifically for automotive autonomous navigation.  

These ADAS systems have been proven to improve 

human driving performance through the separation 

of specific driving functionality into separate 

computational functional tasks.   

 

2. Safety Reasoning System - Concept 
 

The proposed SRS concept is based on two 

primary foundational components.  The first 

foundational component being the computational 

SoD between the driving and safety functionality of 

an autonomous vehicle.  We propose there should 

be one process optimized and focused on 

performing the omnipresent task of negotiating the 

dynamics of the world and one process designed to 

ensure the safety of the decisions made to negotiate 

through that complex world.  This concept is 

something we note is utilized today in many 

complex driving tasks involving humans.  For 

example, in rally car racing the task of negotiating 

the vehicle to the finish line, in the most optimal 

and safe fashion, is a two-person job.  First there is 

a driver who has the responsibility of negotiating 

the dynamics of the vehicle through the terrain and 

then there is the co-pilot whose responsibility is 

ensuring the driver makes the safest and optimal 

driving decisions by continuously evaluating the 

vehicles current orientation to upcoming terrain 

conditions as in figure 2. 

 

In addition, the SoD concept similarly is 

implemented in the military domain for complex 

driving tasks.  A main battle tank has four crew 

Figure 2: Separation of Duties concept in Rally Car 

racing between driver (negotiating dynamics) and copilot 

(focused on optimization) 

https://www.google.com/imgres?imgurl=http://cameracourage.com/wp-content/uploads/2012/11/val.png&imgrefurl=http://cameracourage.com/2012/11/what-does-a-rally-co-driver-do/&docid=_H1QMvs5ynucDM&tbnid=3l5M6QpQkp8LeM:&vet=10ahUKEwid5IbM2LveAhXFhOAKHdDJAf4QMwhGKAEwAQ..i&w=1073&h=603&bih=819&biw=1684&q=rally car racing driver and codriver&ved=0ahUKEwid5IbM2LveAhXFhOAKHdDJAf4QMwhGKAEwAQ&iact=mrc&uact=8
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members assigned to operate the vehicle (driver, 

gunner, loader and commander).  The commander 

is responsible for guiding the activities of the other 

members to ensure the effective utilization and safe 

operation of the system.  The driver is again solely 

responsible for the focusing on the dynamics of the 

driving task.   

 

In our SoD concept we propose the separation of 

the autonomous driving task into two separate 

computational processes: Autonomous Mobility 

Controller (AMC) and Safety Reasoning System 

(SRS) as described in figure 3.   

 

 

 

Both of these computational systems work 

together to reason about the world around the 

autonomous vehicle but utilizing differently 

conditioned sets of the source information.  The 

AMC processes deterministic real time information 

related to the current state of world around the 

vehicle to make mobility decisions.  The SRS 

rationalizes about the mobility decisions of the 

AMC probabilistically as it relates to the current 

and projected world states around the vehicle to 

provide current-time safety decisions.  This 

utilization of projected future world state 

information into the vehicles current-time safe-

motion decision processes produces an explicit 

anticipatory feed into the vehicles ANS as shown in 

figure 4 [21].  This anticipatory decision process is 

the second fundamental conceptual component of 

the SRS.    

 

 

 As described by Robert Rosen [22] an 

anticipatory system is one that can anticipate the 

environment around it.  Rosen describes the means 

by which a natural system is internally guided and 

controlled via encoded information acting as an 

interactive set of models – of self, of environment, 

and of relations between the two through time.   

These natural systems (physical things in the 

world) are modeled by formal systems, which are 

mathematical models. These formal models are 

used to simulate natural systems. But in order to 

provide anticipatory knowledge, they must produce 

predictions ahead of the predicted phenomena (as 

shown in figure 4). 

 

In our approach we implement anticipation 

through the utilization of propositional logic and 

probabilistic graphical models.  We use these 

techniques to correlate select information sources 

available within an autonomous vehicles operating 

environment (both physical and semantic) into 

probabilistic safety variables.  These probability 

variables are projected forward in the scene via 

small-time windows by leveraging the casual 

nature of information changes within rule-defined 

environments (such as roadways).   This inferenced 

information is compared against the intended 

current-time actions of the autonomous vehicle of 

interest (called Ego vehicle) attempting to 

autonomously maneuver within this complex rule 

defined environment (such as a T-intersection).   

Figure 3: The relationship between a control space 

system diagram (representing an autonomous vehicles 

control system) and a State Based Probabilistic Diagram 

(representing the Safety Reasoning System).   

Figure 4: Explicit State Based Anticipation.  Influence actual 

action decision making due to future predictions, expectations, or 

intentions. 
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3. Safety Reasoning System - Specifics 
  

The anticipatory SRS predicts changes in the Ego 

vehicles environment from a global (infrastructure-

based sensing) and local (vehicle-based sensing) 

perspective as shown in figure 5.   

 

 

This sensory information is reasoned upon to 

produce the probabilistic safety variables via 

conditional and logical propositions in each sensor 

domain.  These variables are updated as the scene 

conditions are simulated forward at a rate of time 

faster than the Ego vehicles ANS decision cycle.  

The SRS will then determine a percent safe 

probability for the vehicles intend action (provided 

by the ANS) based on this forward safety-oriented 

predicted scene information.  Based on the 

percentage of safety provided by the SRS the 

autonomous vehicle will either perform, modify or 

cease to perform its intended action.   

 

3.1. Infrastructure-sensing 
The sub process for producing safety variables is 

calculated utilizing a sensory decomposition 

process involving grid occupancy calculations as 

described in figure 6. 

 

 

 

A key component in figure 6 is the predictive 

evidence calculation.  This is accomplished 

utilizing a series of semantic propositional 

thresholding techniques as shown in in figure 7: 

 

  
 

      

From the process described in figure 7 a 

probabilistic variable MD (Map Data) is produced 

that represents the safety proposition of the Ego 

a) b) c) 

Figure 5: a) T-intersection with Ego vehicle (making 

turn) and traffic with overhead camera b) Overhead 

intersection information from infrastructure-sensing c) 

Vehicle-based sensing of traffic moving right to left from 

ego vehicle (dark red – vehicle sensed at ti; pink – vehicle 

sensed at ti+1; while – projected vehicle location at ti+k 

Figure 6: Pictorial representation for process of 

decomposing overhead infrastructure-based sensing into 

probabilistic safety variables 

Figure 7: Pictorial representation for the Predictive 

Evidence Calculations in figure 6.  Where ti represents 

time; WE is a semantic variable representing the world 

environment; WP is a physical variable representing grid 

occupancy; Tmap is a database of grid cells 



Proceedings of the 2019 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

DISTRIBUTION A.  Approved for public release; distribution unlimited. OPSEC #: OPSEC2692 

 

Page 6 of 11 

vehicles intended action in the T-intersection scene, 

based on infrastructure-sensed/projected scene 

changes across multiple time slices.  This MD 

variable is an evidence input to the Dynamic 

Bayesian Network (DBN) that produces the holistic 

robotic vehicle safety evidence calculations shown 

in the final step of figure 6.     

 

3.2. Vehicle-based sensing 
The sub-process for calculating the vehicle safety 

information from vehicle-based sensor information 

begins with collecting and projecting obstacle data 

as described in figure 8. 

 

 
 

These sensor feeds in figure 8 are used to perceive 

and sample the environment at given time steps.   

We are using a simplistic sensing model described 

below. 

   

1) Using two-time steps, the vehicle can infer the 

nature and velocity of obstacles in its direct 

environment.  

2) Using knowledge of the sensor characteristics, 

if the first cluster region of points classified as 

a vehicle object does not appear in the next 

time step in the same position (e.g. time of 

flight calculation is longer) then it is assumed 

the vehicle is moving (only focusing on closet 

points). 

3) If the vehicle is moving a closest cluster of 

points will be captured in two sensor time 

steps, thus future locations are projected 

forward based on this inferred velocity 

information.   

 

The simple projective process described above is 

viable for the purposes of this research proposal.  A 

more elaborate scheme would be utilized in a 

realized automotive system where the dynamics of 

the world, that can cause sensor anomalies, cannot 

be so easily abstracted away.  The sensor 

information collected/projected in these time 

intervals is translated into a probabilistic variable 

Local Sensor (LS). This variable represents a safety 

proposition of the autonomous vehicles intended 

action in the T-intersection scene, based on vehicle-

sensed/projected scene changes across multiple 

time slices.  This LS variable is also utilized in the 

DBN similar to MD.   
 

 

3.3. Anticipatory process 
 

For safety evidence calculations, the final step of 

figure 6, we utilize a Dynamic Bayesian Network 

(DBN) [23].   A DBN is a generalization of linear 

state-space models such as Kalman filters [24] and 

simple dependency models such as Hidden Markov 

Models (HMMs) [25] into a probabilistic 

representation and inference mechanism for time-

dependent domains.   DBNs are a methodology 

becoming more common in probabilistic robotic 

applications as they are computationally more 

Figure 8: Vehicle senses the world around it with 

perception sensors.  Closest obstacle within the disk 

sensor region provides information related to objects seen 

from the vehicle perspective.  Blue vehicle is the robotic 

vehicle, Red vehicle is location of obstacle vehicle for first 

sensor cycle reading, pink vehicle is location of obstacle 

vehicle for second cycle sensor reading, white vehicle is 

the projected location of the vehicle based on analysis 

from first two sensor readings.  Yellow sensor feeds 

utilized sensor feeds determining vehicle location.  Red 

sensor feeds are not used.  Black sensor feeds are 

unaffected sensors in the scenario 
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effective than HMMs, when dealing with more than 

a single random variable in the inference process, 

and they allow for consideration of both linear and 

non-linear distributions within their transition and 

sensor models (unlike Kalman Filters).   

 

All three of these methods are a means to 

probabilistically reason about the belief state of a 

variable over time.  From a prior probability 

distribution (initial probability of safely executing 

the turn in our T-intersection case) and a transition 

model (influence time has on relevancy of 

projected data in the intersection scenario) one can 

predict how the world might evolve over the next 

time step.  From the observations (Ego vehicle 

intended actions at each time step) and a sensor 

model (reliability of the sensor data in that scenario 

(MD – accident rates at intersection; LS – reliability 

of on vehicle sensor readings) an agent can update 

its belief state (belief in safety of intended action 

given inferenced data).  A changing world can be 

modeled by using a variable Xt for the set of state 

variables (xt for a single value at a given time t), Et 

for the set of observable evidence variables (et for a 

single value at a given time t) for each aspect of the 

world state at each point in time.    

 

A DBN, like any other temporal state-space 

predictive inferencing technique, is composed of an 

acyclic graph of conditionally dependent variables 

represented by nodes and arcs, a prior probability 

distribution variable (equation (1)), a transition 

model (equation (2))) and sensor model (equation 

(3)).   

 

                                𝑃(𝑋0)                                   (1) 

 

                𝑃(𝑋𝑡|𝑋0:𝑡−1) = 𝑃(𝑋𝑡|𝑋𝑡−1)              (2) 

 

                𝑃(𝐸𝑡|𝑋0:𝑡 , 𝐸0:𝑡−1) = 𝑃(𝐸𝑡|𝑋𝑡)           (3)          

 

From these models you can form the networks 

joint probability distribution function as 

represented by equation (4). 

 

                
            𝑃(𝑋0:𝑡 , 𝐸1:𝑡) = 𝑃(𝑋0) ∏ 𝑃(𝑋𝑖

𝑡
𝑖=1 | 𝑋𝑖−1)𝑃(𝐸𝑖  |𝑋𝑖)  (4) 

        

With the joint probability distribution function 

established we need to choose the inferencing 

method that will be utilized for updating the belief 

state queries to the DBN network over time.  We 

will be utilizing the DBN for predictive analysis but 

we will be using the filtering method of inferencing 

(equation 5) for this activity as opposed to the 

predictive technique (equation (6)).   

 
𝑃(𝑋𝑡+1| 𝑒1:𝑡+1) = 𝛼𝑃(𝑒𝑡+1|𝑋𝑡+1) ∑ 𝑃(𝑋𝑡+1|𝑥𝑡)𝑃(𝑥𝑡|𝑒1:𝑡)𝑥𝑡

 (5) 

 
𝑃(𝑋𝑡+𝑘+1| 𝑒1:𝑡) = ∑ 𝑃(𝑋𝑡+𝑘+1|𝑥𝑡+𝑘)𝑃(𝑥𝑡+𝑘|𝑒1:𝑡)𝑥𝑡+𝑘

           (6) 

 

We are able to utilize the filtering method for 

inferencing, which computes the belief state given 

all evidence to date, as opposed to the predictive 

method, which calculates the posterior distribution 

over the future state, as we are inferencing forward 

in the network with predictive evidence in place of 

observable evidence (as seen in figure 9).  

 

 

 

 

 

 

 

Figure 9: Example Acyclic DBN Graphical Model of an 

Anticipatory Safety Calculation system for the T-

intersection problem utilizing real and anticipated binary 

evidence updates to conditionally dependent variables MD 

and LS.   
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  In figure 9 we utilize real and projected binary 

evidence updates to the conditionally dependent 

variables Map Data (MD) and Local Sensor (LS) 

through the intended action observational sensor 

inputs of the network. These sensor inputs are 

condition, as briefly described in sections 3.1 and 

3.2, and projected forward in the network to allow 

for queries concerning the safety of the vehicle such 

as P (Safe Turn at t=1 | MD3, LS3).   As seen in this 

query the network can be utilized to make current 

time safety decisions based on both current time 

and anticipated observations.  This allows a 

decision to make a left turn in a T-intersection more 

than a function of what the vehicle sees in from of 

it or can extrapolate from current overhead data.  It 

adds to that function the consideration of how those 

scenes may change in a short window of time given 

other information projected into the world from 

correlated semantic projections that form particular 

potential physical world inputs (like a vehicle 

appearing into an overhead scene based on 

reasoning on a series of semantic indicators…as 

briefly shown in the first part of figure 7).       

 

4. Initial Results 
We test the results of the SRS concept utilizing 

the simple left turn T-intersection scenario detailed 

in the predictive evidence calculations in figure 7.         

We compare the results of a traditional temporal 

inferencing technique utilizing the predictive 

inferencing method described in equation (6) 

against the SRS concept utilizing a filtering 

temporal (equation (5)) method with predicted 

evidence updates coming in the form of intended- 

action safety-state variable binary updates to Map 

Data (MD) and Local Sensor (LS) data. The 

intended action of the vehicle is a Safe Turn (ST) at 

the T-intersection. The queries to the network to 

predict the safety of the intended action, in this 

example, would be as described below: 

 

A) Traditional Inferencing Method with query 

𝑃(𝑆𝑇3|𝑚𝑑1, 𝑙𝑠1), (see figure 10) 

a. Where you are using the network to 

predict the probability of the 

intended action, safe turn (ST), 

being true three time steps into the 

future given the last evidence update 

being provided at the current time 

step t=1.  In this scenario you are 

querying the network utilizing only 

the established conditional 

probability table for transition 

model. 

B) SRS Inferencing Method with query P (ST1| 

MD3, LS3) =   𝑃(𝑆𝑇3|𝑚𝑑2, 𝑙𝑠2, 𝑚𝑑3, 𝑙𝑠3) 

(see figure 11) 

a. Where you are using the network to 

predict the probability of the 

intended action, safe turn (ST), 

being true, at t=1, assuming two 

predicted sets of data for MD and 

LS that are reduced into truth 

variables of safety at each future 

time step.  

 

An additional assumption in this example is that we 

have the variables of the conditional probability 

tables for both the sensor and transition models of 

the network through expert acquired previous 

knowledge.   

 

 

 
In figure 10 the inference calculations for the DBN 

network and Conditional Probability Table (CPT) 

tables asserts that the network inferenced belief of 

a safe turn decays from 96% at time step 1, to 58% 

Figure 10: Calculations for prediction inferencing 

technique utilizing only network transition model 

Conditional Probability Tables (CPTs) with a last 

evidence update to the DBN at time step =1 for the state 

safety cases of P(ST3|md1 = F (meaning no evidence of 

concern), ls1 = F)  
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at time step 2 to 38% at time step 3.  This means 

given evidence at time step 1 of no safety concern 

from either MD or LS data the transition model of 

the network would reduce the probability of 

making a safe turn at time step 3 from 96 to 38% 

given the uncertainty embedded into the transition 

model CPTs.   
 

 

 

As shown in figure 11 the filtering inference 

method with predicted evidence produces a safe 

turn probability belief decay from 96% at time step 

1, to 83% at time step 2 (even with predicted MD 

evidence changing) and finally to 13% at time step 

3 with both MD and LS data representing a safety 

concern of T.    

 

The analysis from this example demonstrates how 

the concept works as would be expected regarding 

forward projected variable/query belief states given 

properly configured evidential and conditional data 

sets.  If variable temporal informational can be 

believed to be sequential and linear in nature, 

regarding its evolution, the results of using 

projected evidence and the filtering inferencing 

technique, to determine the belief state of a 

query/variable, is more accurate than inferencing 

with the prediction method and previous evidence.  

This also assumes that the temporal predicted 

information is simple as well (e.g. binary).  If the 

predictions in evidence are wrong then the results 

of the inferencing will also be incorrect.  However 

in the cases where you have a high degree of 

sequential causality related to changes in evidence, 

such as T-intersections, those concerns are of 

lessened concern regarding holistic impact.   

 

5. Conclusion 
 

We are proposing a new method of utilizing 

Dynamic Bayesian Networks (DBN) in 

anticipatory configuration via the utilization of the 

temporal filtering inference technique with 

predicted sequential binary evidence.  This 

utilization assumes that the binary observable 

evidence, that are the inputs into the DBN, is based 

on preprocessed and filtered information.  This 

filtering process is utilized to ensure that this base 

reference information is relevant, salient and 

sufficiently sequential and linear in nature such that 

binary truth estimations can be reasonably believed 

to be the “best estimation” possible.     

 

This modified approach to temporal projective 

inferencing tracks with the concept that Robert 

Rosen introduced in his book “Anticipatory 

Systems”.   The methods described in this paper are 

derived and explained in reference to the modeling 

techniques he introduced.  

  

The intended application domain for this research 

is within the domain of autonomous vehicles.  

Specifically associated with the proposed concept 

of a Separation of Duties (SoD) consideration 

between and autonomous vehicles motion planning 

(managed by one of any given Autonomous 

Navigation Systems (ANS)) and motion execution 

(enabled after evaluation via the anticipatory Safety 

Reasoning System (SRS)).     

 

In this paper we gave a simple example 

demonstrating the potential utility of this approach 

could be applied.  More work needs to be done in 

ensuring this technique works across a multitude of 

intersection scenario’s as well as with a series of 

data sets and data reduction techniques.   

Figure 11: Calculations for prediction inferencing 

technique utilizing transition and sensor models with 

Conditional Probability Tables (CPTs) with evidence 

updates to the DBN at time step 1 P(ST1|md1 = F, ls1 = F); 

at time step 2 P(ST1|md2 = T, ls2 = F); at time step 3 

P(ST1|md3 = T, ls3 = T); 
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